Plasticity in Ca2+ selectivity of Orai1/Orai3 heteromeric channel.
نویسندگان
چکیده
A general cellular response following depletion of intracellular calcium stores involves activation of store-operated channels (SOCs). While Orai1 forms the native Ca(2+) release-activated Ca(2+) (CRAC) channel in mast and T cells, the molecular architecture of less Ca(2+) selective SOCs is insufficiently defined. Here we present evidence that diminished Ca(2+) selectivity and robust Cs(+) permeation together with a reduced fast inactivation are characteristics of heteromeric Orai1 and Orai3 channels in contrast to their homomeric forms. The first extracellular loop of these Orai isoforms differs by two aspartates replacing glutamates that affect the selectivity. Co-expression of an Orai3 mutant that mimicked the first loop of Orai1 with either Orai1 or Orai3 recovered or decreased Ca(2+) selectivity, respectively. Heteromeric Orai1/3 protein assembly provides a concept for less Ca(2+)-selective SOCs.
منابع مشابه
Regulation of Ca2+ signaling in prostate cancer cells
Upon store depletion, stromal interaction molecules (STIM) cluster and activate Orai Ca2C channels in the plasma membrane, which mediate SOCE. The Orai protein family consists of 3 members: Orai1, Orai2, and Orai3. Several groups have demonstrated that these homologues can form heteromultimers. In contrast to Orai1 homomeric channels, Orai1/Orai3 heteromeric channels exhibit altered characteris...
متن کاملStore-dependent and -independent modes regulating Ca2+ release-activated Ca2+ channel activity of human Orai1 and Orai3.
We evaluated currents induced by expression of human homologs of Orai together with STIM1 in human embryonic kidney cells. When co-expressed with STIM1, Orai1 induced a large inwardly rectifying Ca(2+)-selective current with Ca(2+)-induced slow inactivation. A point mutation of Orai1 (E106D) altered the ion selectivity of the induced Ca(2+) release-activated Ca(2+) (CRAC)-like current while ret...
متن کاملOrai1 and Orai3 in Combination with Stim1 Mediate the Majority of Store-operated Calcium Entry in Astrocytes
Astrocytes are non-excitable cells in the brain and their activity largely depends on the intracellular calcium (Ca2+) level. Therefore, maintaining the intracellular Ca2+ homeostasis is critical for proper functioning of astrocytes. One of the key regulatory mechanisms of Ca2+ homeostasis in astrocytes is the store-operated Ca2+ entry (SOCE). This process is mediated by a combination of the Ca...
متن کاملCommunication between N terminus and loop2 tunes Orai activation
Ca2+ release-activated Ca2+ (CRAC) channels constitute the major Ca2+ entry pathway into the cell. They are fully reconstituted via intermembrane coupling of the Ca2+-selective Orai channel and the Ca2+-sensing protein STIM1. In addition to the Orai C terminus, the main coupling site for STIM1, the Orai N terminus is indispensable for Orai channel gating. Although the extended transmembrane Ora...
متن کاملBiochemical and functional characterization of Orai proteins.
Stimulation of immune cells triggers Ca2+ entry through store-operated Ca2+ release-activated Ca2+ channels, promoting nuclear translocation of the transcription factor NFAT. Through genome-wide RNA interference screens in Drosophila, we and others identified olf186-F (Drosophila Orai, dOrai) and dStim as critical components of store-operated Ca2+ entry and showed that dOrai and its human homol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 46 شماره
صفحات -
تاریخ انتشار 2009